DESCRIPTION

The Opticom™ GPS System assists authorized priority vehicles through signalized intersections by providing temporary right-of-way through the use of common traffic controller functions.

The Opticom™ GPS System consists of the following matched components:

Vehicle Equipment
- Opticom™ Model 2100 High Priority Radio/GPS Control Unit
 - OR -
 - Opticom™ Model 2101 Low Priority Radio/GPS Control Unit
- Opticom™ Model 1050 GPS/Radio Antenna
- Opticom™ Model 2171 Vehicle Interface Cable

Intersection Equipment
- Opticom™ Model 3100 GPS Radio Unit containing a GPS receiver and antenna and a 2.4 GHz spread spectrum transceiver with antenna
 - OR -
 - Opticom™ Model 3101 GPS Radio Unit containing a GPS receiver and a 2.4 GHz spread spectrum transceiver, with Opticom™ Model 1050 GPS/Radio Antenna and Opticom™ Model 1072 GPS Cable Assembly
- Opticom™ Model 764 Multimode Phase Selector
- Opticom™ Model 768 Auxiliary Interface Panel
- Opticom™ Model 1040 GPS Card Rack or Opticom™ Model 760 Card Rack or Opticom™ Model 770 Card Rack
- Opticom™ Model 1070 GPS Installation Cable

Opticom™ GPS System vehicle equipment is mounted on the priority vehicle. Its GPS receiver obtains information from the constellation of global positioning satellites. This information is used to compute the location, speed and heading of the vehicle. This information, along with a priority request and the state of the vehicle’s turn signal, is broadcast using the 2.4 GHz spread spectrum transceiver.

Opticom™ GPS System intersection equipment receives the radio transmission from the vehicle equipment. The intersection equipment then compares the information being received from the vehicle with the parameters stored in the intersection equipment’s memory. If the vehicle is heading toward the intersection in a predefined approach corridor, is requesting preemption or priority and has met all other programmed parameters, the corresponding phase selector output is activated. This output is connected to the traffic controller.

When activated, the controller cycles to grant a green light to the requesting vehicle or holds the green, allowing the vehicle to pass through the intersection.

The Opticom™ Model 760 Card Rack or Model 770 Gate Opener Card Rack provide the power and logic wiring for the Opticom™ Model 764 Multimode Phase Selector, which plugs directly into a slot in the unit. The Opticom™ Model 768 Auxiliary Interface Panel provides connections for monitoring green phases and provides additional priority control outputs as well as additional outputs for time synchronization and confirmation lights.
OPTICOM™ GPS SYSTEM VEHICLE EQUIPMENT

Features

Opticom™ GPS System vehicle equipment is intended for use on priority vehicles. The vehicle equipment kit consists of the compact Opticom™ Model 2100 or 2101 Radio/GPS Control Unit containing a GPS receiver and a 2.4 GHz spread spectrum transceiver, used with the Opticom™ Model 1050 GPS/Radio Antenna and the Opticom™ Model 2171 Vehicle Interface Cable.

Opticom™ GPS System vehicle equipment has the following features:

- Operates on 10-36 VDC
- Vehicle interface inputs 10-36 VDC
- Less than 2 amps peak current draw
- Configurable turn signal sense inputs with multiple activation options
- Speed pulse sense (future)
- Reverse/Neutral sense (future)
- 4 configurable outputs (future)
- 2 configurable inputs (future)
- Status indicators
 - On/Off switch
 - Status
 - Radio
 - Link
 - Priority
 - Disable
- Brightness level of indicators is photosensor controlled with separate settings for day and night
- Capability to control an Opticom™ Infrared emitter through a single control module
- Meets FCC part 15 Class A specifications
- Option to add dead reckoning unit (future)
- Additional GPS output in NMEA format for other onboard uses
- Vehicle identification encoding: selectable at installation
- 25-foot interface cable for installation flexibility
- Adapter available for upgrading from previous generation equipment without rewiring
- Available Windows™ Configuration and Maintenance Software
- Configurable operating mode of disable input
 - Latching or non-latching
 - Disable trigger method
 - Apply ground to +12 VDC
 - Ground to +12 VDC
- Configurable remote activation mode
 - Apply 10-36 VDC
 - Apply +5 VDC
 - Apply ground
- Configurable activation method
 - Light bar and/or manual
- Accepts Passenger Count, and Minutes Late conditional priority input via J1708 from compatible onboard devices such as AVL and passenger counters.
- Internally records each system activation. Each entry contains:
 - Intersection name
 - Date and time of the activity
 - Vehicle class code vehicle ID, Agency ID
 - Channel called
 - Priority of the activity
 - Duration of the activation
 - If preempt has been requested and reason if not
 - Turn signal status at the end of the call
 - Entry, exit and average speed
 - Relative priority level
 - Conditional priority level
 - Over 38 million combinations per priority level
- User-programmable reference vehicle name (up to 40 characters)
- Self-diagnosis
- Non-obstructed transmission at least 2,500 feet (762 m)
- Turn signal monitoring transmitted to intersection
- RS485/J1708 serial interfaces
- GPS data output
- Ethernet port
- USB Port
- RS-232 serial port

The following reference model numbers appear on the shipping boxes and serial plate labels:

- Opticom™ Model 1050 GPS/Radio Antenna
- Opticom™ Model 2100 High Priority Radio/GPS Control Unit
- Opticom™ Model 2101 Low Priority Radio/GPS Control Unit
- Opticom™ Model 2171 Vehicle Interface Cable

Operating Parameters

- Temperature: -34°C to +74°C (-30°F to +165°F)
- Humidity: 5% to 95% relative
- High or low priorities selected by model
- User-programmable vehicle ID code, which is transmitted to intersection equipment
 - 254 agency IDs
 - 15 vehicle classes
 - 9999 vehicle IDs
- Over 38 million combinations per priority level
- User-programmable reference vehicle name (up to 40 characters)
- Self-diagnosis
- Non-obstructed transmission at least 2,500 feet (762 m)
- Turn signal monitoring transmitted to intersection
- RS485/J1708 serial interfaces
- GPS data output
- Ethernet port
- USB Port
- RS-232 serial port

Physical Dimensions

Opticom™ Model 2100 or 2101 Radio/GPS Control Unit
- Length: 7.25 in. (18.4 cm)
- Width: 5.44 in. (13.8 cm)
- Height: 1.63 in. (4.1 cm)
- Weight: 1.2 lb. (0.5 kg)

Opticom™ Model 1050 GPS/Radio Antenna
- Diameter: 2.85 in. (7.2 cm)
- Height: 1.4 in. (3.5 cm)
- Cable Length: 15.0 ft. (4.6 m)
- Weight with Cables: 0.6 lbs. (0.30 kg)

Opticom™ Model 2173 Vehicle Interface Cable Adapter for using previous generation harness

The Opticom™ Model 2173 Vehicle Interface Cable Adapter is available for purchase separately if you are upgrading from a Opticom™ Model 1020 or 1021 Vehicle Control Unit using a Opticom™ Model 1071 Vehicle Interface Harness to a Opticom™ Model 2100 or 2101 Radio/GPS Control Unit. By using the Opticom™ Model 2173 Vehicle Interface Cable Adapter, you will not need to rewire the vehicle. In this case, you will not need the Opticom™ Model 2171 Vehicle Interface Cable that is included with your new vehicle kit.

For complete warranty information visit www.gtt.com.